wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin A=45and cos B=513, where 0 < A, B<π2, find the values of the following:

(i) sin (A + B)
(ii) cos (A + B)
(iii) sin (A − B)
(iv) cos (A − B)

Open in App
Solution

Given: sinA = 45 and cosB = 513We know that cosA = 1 - sin2A and sinB = 1 - cos2B , where 0 < A , B < π2 cosA = 1 - 452 and sinB = 1 - 5132 cosA =1 - 1625 and sinB = 1 - 25169 cosA =925 and sinB = 144169 cosA =35 and sinB = 1213

Now,

(i) sinA+B = sinA cosB + cosA sinB =45×513 + 35×1213 =2065 + 3665 =5665

(ii) cosA+B = cosA cosB - sinA sinB =35×513 - 45×1213 =1565 - 4855 =-3365


(iii) sinA-B = sinA cosB - cosA sinB =45×513 - 35×1213 =2065 - 3665 =-1665


(iii) sinA-B=sinA cosB-cosA sinB =45×513-35×1213 =2065-3665 =-1665

iv cosA-B = cosA cosB + sinA sinB =35×513 + 45×1213 =1565 + 4865 =6365

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Factorisation and Rationalisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon