If sin A and sin B of a ΔABC satisfy c2x2−c(a+b)x+ab=0 then the triangle is
equilateral
isosceles
right angled
acute angled
sin A+sin B=c(a+b)c2=a+bc
sin A sin B=abc2
∴sin A=a2R,sin B=b2R
∴a+b2R=a+bc
∴c=2R
∴ right angled
In In ΔABC, if 8R2=a2+b2+c2, then the triangle is