If sin (A + B) = sin A cos B + cos A sin B and cos (A - B) = cos A cos B + sin A sin B, find the values of (i) sin 75∘ and (ii) cos 15∘.
(i) Given Sin(A+B)=SinA CosB+CosA SinB.
Sin75=Sin(45+30)=Sin45 Cos30+Cos45 Sin30.
Sin75=(1√2)(√32)+(1√2)(12)=[√3+1]2√2.
(ii) given cos(A−B)=cosA cosB+sinA sinB
cos15°=cos(45−30)=cos45 cos30+sin45 sin30
=(1√2)(√32)+(1√2)(12)
=√32√2+12√2=(√3+1)2√2