If sinA=nsinB, then (n-1)(n+1)tan(A+B)2=
sinA-B2
tanA-B2
cotA-B2
None of these
Explanation for the correct option.
Given that, sinA=nsinB
It can be rewritten as: sinAsinB=n1
By componendo and dividendo rule we have:(sinA+sinB)(sinA-sinB)=(n+1)(n-1)Now we know that,sinx+siny=2sin(x+y)2cos(x-y)2andsinx-siny=2sin(x-y)2cos(x+y)2
So we have2sin(A+B)2cos(A-B)22sin(A-B)2cos(A+B)2=(n+1)(n-1)tan(A+B)2tan(A-B)2=(n+1)n-1n-1n+1tanA+B2=tanA-B2Hence, option B is correct.
If n is odd, then 1+3+5+7+.....+ to n terms is equal to
(a) (n2+1)
(b) (n2−1)
(c) n2
(d) (2n2+1)