The answer is (A)
Thinking Process
i) First we use the formula cosθ=√1−sin2θ to get the value of cosθ
ii) Now, we use the trigonometric ratio cotθ=cosθsinθ to get the value of cotθ
Given, sinA=12,
∴cosA=√1−sin2A=√1−(12)2
=√1−14=√34=√32 ⌊∵sin2A+cos2=1⇒cosA=√1−sin2A⌋
Now, cotA=cosAsinA=√3212=√3
Hence, the required value of tan A is √3