If sinA+cosA=2 then sinA-cosA=
Solve the required expression:
Given expression, sinA+cosA=2…(i)
Squaring the above equation on both sides we get,
⇒sinA+cosA2=2
⇒sin2A+cos2A+2sinAcosA=2 [applying formula a+b2=a2+b2+2ab]
⇒1-cos2A+1-sin2A+2sinAcosA=2 [∵sin2θ+cos2θ=1]
⇒2-(cos2A+sin2A-2sinAcosA)=2
⇒(sinA-cosA)2=2-2 [applying formula a-b2=a2+b2-2ab]
⇒(sinA-cosA)2=0
Take the Square root of the above equation on both sides we get,
⇒sinA-cosA=0
Hence, sinA-cosA=0.