wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinA+sin2A+sin3A=1, then find the value of cos6A4cos4A+8cos2A.

Open in App
Solution

sinA+sin2A+sin3A=1
sinA+sin3A=1sin2A=cos2A
sinA(1+sin2A)=cos2A
sinA(2cos2A)=cos2A (since, sin2A=1cos2A)

Squaring both sides,
sin2A(44cos2A+cos4A)=cos4A
(1cos2A)(44cos2A+cos4A)=cos4A
44cos2A+cos4A4cos2A+4cos4Acos6A=cos4A
4cos6A+4cos4A8cos2A=0
cos6A4cos4A+8cos2A=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon