Tangent, Cotangent, Secant, Cosecant in Terms of Sine and Cosine
If sin A+sin ...
Question
If sinA+sinB+sinC=0 and cosA+cosB+cosC=0, then the value of sin(A−B2) is (where A,B,C∈[0,2π])
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√32
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D√32 sinA+sinB+sinC=0⇒sinA+sinB=−sinC⋯(1) cosA+cosB+cosC=0⇒cosA+cosB=−cosC⋯(2)
Squaring and adding both the equation (1) and (2), (sinA+sinB)2+(cosA+cosB)2=sin2C+cos2C⇒(sinA+sinB)2+(cosA+cosB)2=1⇒sin2A+sin2B+2sinAsinB+cos2A+cos2B+2cosAcosB=1⇒1+1+2(cos(A−B))=1⇒cos(A−B)=−12⇒A−B=120∘ or 240∘⇒A−B2=60∘ or 120∘∴sin(A−B2)=√32