The correct options are
A tan(α+2β)=−√3
B tan(2α+β)=−1/√3
Given sin(α+β)=1,
⇒α+β=π/2 (because α,βϵ[0,π/2]),
Also given sin(α−β)=12
⇒α−β=π6.
Therefore, α=π3 and β=π6
Now, α+2β=2π/3
⇒tan(α+2β)=tan2π/3=tan(π−π/3)
=−tanπ/3=−√3
⇒tan(α+2β)=−√3
Also, 2α+β=5π/6
tan(2α+β)=tan5π6=tan(π−π/6)
=−tanπ/6=−1/√3
⇒tan(2α+β)=−1/√3