wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin(α+β)=1 and sin(αβ)=12

where 0α, βπ2thenfindthevaluesoftan(α+2β)andtan(2α+β).

Open in App
Solution

sin(α+β)=1

sin(α+β)=sinπ2

α+β=π2 .........(1)

sin(αβ)=12

sin(αβ)=sinπ6 or sin(ππ6)

αβ=π6 or ππ6

αβ=π6 or 5π6

But βπ2 and 0α(given)

αβ=π6 .........(2)

Equations (1)+(2) gives

α+β+αβ=π2+π6

2α=4π6=2π3

α=π3

substitute the value of α=π3 in (1) we get

β=π2α=π2π3=π6

α=π3 and β=π6

Now,
(a)tan(α+2β)=tan(π3+2π6)

=tan(2π3)

=tan(ππ3)

=tanπ3=3

(b)tan(2α+β)=tan(2π3+π6)

=tan(5π6)

=tan(ππ6)

=tanπ6=13

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon