Putting sin(α/4)=x, we get cos(α/2)=1−2x2 and cosα=2(1−2x2)2−1=1−8x2+8x4 ..... (1)
Futhenmore, sinα=336/625 implies
cosα=±√1−(336625)2
Choosing the minus sign because α lies in the second quadrant we get
cosα=−√(625+336)(625−336)(625)2
=−√(961)(289)(625)2=(31)(17)625=−527625
Putting this in (1) gives 1−8x2+8x4=−527/625
⇒x4−x2+144/625=0
⇒x2=12⎡⎣1±√1−(4)(144)625⎤⎦=12(1±725)
i.e x2=16/25 or 9/25.Since x=sin(α/4) is positive for the specified values of α. we get sin(α/4)=4/5 or 3/5.
Now, 450o<α<540o means the angle α/4 lies in the second quadrant with 112.5o<α/4<135o
Therefore we must have
sin135o<sinα/4<sin112.5o
⇒sinα/4>1/√2⇒sinα/4>0.7.
This excludes the values sinα=3/5=0.6, and the answer is sin(α/4)=4/5