wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinα=a2b2a2+b2 then prove that cotα=2aba2b2.

Open in App
Solution

Given,
sinα=a2b2a2+b2
or, cosecα=a2+b2a2b2.......(1).

We know cosec2αcot2α=1

or, cot2α=cosec2α1

or, cot2α=(a2+b2a2b2)21 [ Using (1)]

or, cot2α=(a2+b2)2(a2b2)2(a2b2)2

or, cot2α=4a2b2(a2b2)2

or, cotα=2aba2b2.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon