The correct option is C [3π4,π]
We have sin α=1√5⇒cos α=2√5
and sin β=35⇒cos β=45
sin(β−α)=sin β cos α−sin α cos β
35.2√5−1√5.45=25√5=0.1789
Now sinπ4=1√2=0.7071=sin3π4
Since 0 < 0.1789 < 0.7071
∴sin0 < sin(β−α) < sinπ4⇒0 < (β−α) < π4
Also, sin π < sin(β−α) < sin3π4
∴(β−α)ϵ[0,π4] and [3π4,π].