If sin α, sin2 α, 1, sin4 α and sin5 α are in A.P. where −π<a<π, then α lies in the interval-
We have,
sinα,sin2α,1,sin4αandsin5α in A.P.
Then,
Firstterma=sinα
Commondifference=Secondterm-firstterm
Where
T1=Firstterm
T2=Secondterm
T3=Thirdterm
.......
Then, we know that,
If the series in an A.P.
T2−T1=T3−T2=T4−T3=T5−T4
sin2α−sinα=1−sin2α=sin4α−1=sin5α−sin4α
⇒sin2α−sinα=1−sin2α
⇒sin2α+sin2α−sinα=1
⇒2sin2α−sinα−1=0
⇒2sin2α−(2−1)sinα−1=0
⇒2sin2α−2sinα+sinα−1=0
⇒2sinα(sinα−1)+1(sinα−1)=0
⇒(sinα−1)(2sinα+1)=0
⇒sinα−1=0,2sinα+1=0
⇒sinα=1,sinα=−12
⇒sinα=sinπ2,sinα=−sinπ6
⇒α=π2,sinα=sin(π+π6)∵sin(π+θ)=−sinθ
⇒α=π2,α=7π6
Similarly we can show that,
α=−π2
Hence, α=(−π2,π2)
Hence, this is the required answer.