wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinα+sinβ=a and cosα+cosβ=b, show that
(i)sin(α+β)=2aba2+b2
(ii)cos(α+β)=b2a2b2+a2

Open in App
Solution

(i) sin(α+β)=1cos2(α+β)
b2+a2=(cosα+cosβ)2+(sinα+sinβ)2
b2+a2=(cos2α+sin2α)+(cos2β+sin2β)+2(cosαcosβ+sinαsinβ)
b2+a2=1+1+2cos(αβ)=2+2cos(αβ)
and, b2a2=(cosα+cosβ)2(sinα+sinβ)2
b2a2=cos2α+cos2βsin2αsin2β+2(cosαcosβsinαsinβ)
b2a2=(cos2αsin2β)+(cos2βsinα)+2cos(α+beta)
b2a2=cos(α+β)cos(αβ)+cos(β+α)cos(βα)+2cos(α+β)
b2a2=cos(α+β)2cos(αβ)=2
b2a2=cos(α+β)(b2+a2)
Thus, b2a2=(b2+a2)cos(α+β)
cos(α+β)=b2a2b2+a2
sin(α+β)=1(b2a2b2a2)2=4a2b2(a2+b2)=2aba2+b2
(ii) cos(α+β)=b2a2b2+a2
b2+a2=(cosα+cosβ)2+(sinα+sinβ)2
b2+a2=(cos2α+sin2α)+(cos2β+sin2β)+2(cosαcosβ+sinαsinβ)
b2+a2=1+1+2cos(αβ)=2+2cos(αβ)
and, b2a2=(cosα+cosβ)2(sinα+sinβ)2
b2a2=(cos2α+cos2βsin2αsin2β+2(cosαcosβsinαsinβ))
b2a2=(cos2αsin2β)+(cos2βsin2α)+2cos(α+β)
b2a2=cos(α+β)cos(αβ)+cos(β+α)cos(βα)+2cos(α+β)
b2a2=2cos(α+β)cos(αβ)+2cos(α+β)
b2a2=cos(α+β)2cos(αβ)=2
b2a2=cos(α+β)(b2+a2)
Thus, b2a2=(b2+a2)cos(α+β)
cos(α+β)=b2a2b2+a2

flag
Suggest Corrections
thumbs-up
23
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon