wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinαsinβcosαcosβ+1=0, then cotαtanβ=a
Find a

Open in App
Solution

Given, sinαsinβcosαcosβ+1=0
or cosαcosβsinαsinβ=1
or cos(α+β)=1 (i)
Now 1+cotαtanβ=1+cosαsinα×sinβcosβ
=sinαcosβ+cosαsinβsinαcosβ
=sin(α+β)sinαcosβ
=0sinαcosβ=0 [sin2(α+β)=1cos2(α+β)=11=0]
Therefore. a=1
Ans: 1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon