If sin αsinβcosβ+1=0, prove that 1 + cot αtanβ=0.
We have,
sinαsinβ−cosαcosβ+1=0⇒−(cosαcosβ−sinβ)=−1⇒cos(α+β)=1∴sin(α+β)=√1−cos2(α+β)=√1−12=0⇒sin(α+β)=0
Now,
1+cotαtanβ=1+cosαsinα×sinβcosβ=sinα×cosβ+cosα×sinbetasinα×cosβ
= sin(α+β)sinα×cosβ
= 0sinα×cosβ [Using equatioon (ii)]
= 0
∴1+cotαtanβ=0 Hence proved.