If sinα+sinβ+sinγ=0 and cosα+cosβ+cosγ=0, then value of cos(α−β)+cos(β−γ)+cos(γ+α) is
sinα+sinβ+sinγ=0⇒sinα+sinβ=−sinγ
...(1)
cosα+cosβ+cosγ=0⇒cosα+cosβ=−cosγ ...(2)
Squaring and adding (1) and (2), we get
(sinα+sinβ)2+(cosα+cosβ)2=sin2γ+cos2γ⇒2+2cos(α−β)=1⇒cos(α−β)=−12
Similarly, cos(β−γ)=−12,cos(γ−α)=−12
Therefore,
cos(α−β)+cos(β−γ)+cos(γ−α)=−32