If sin α+sin β+sin γ=0=cos α+cos β+cos γ then value of cos(α−β)+cos(β−γ)+cos(γ−α) is
(sin α+sin β)2+(cos α+cos β)2=(1−sinγ)2+(1−cosγ)2⇒1+1+2 cos(α−β)=1⇒1 cos (α−β)=−12Similarly cos(β−γ)=−12 and cos(γ−α)=−12
∴ Thus the value of expression is −32
If cos(α−β)+cos(β−γ)+cos(γ−α)=−32, Provethat cosα+cosβ+cosγ=sinα+sinβ+sinγ=0