If sinα,sinβ,sinγ are in A.P. and cosα,cosβ,cosγ are in G.P., then cos2α+cos2γ−4cosαcosγ1+sinαsinγ is equal to
Assume y=cos2α+cos2γ−4cosα.cosγ1−sinα.sinγ
since, sinα,sinβ,sinγ are in A.P ⇒2sinβ=sinα+sinγ
squaring, 4sin2β=sin2α+sin2γ+2sinα.sinγ=2−(cos2α+cos2γ)+2sinα.sinγ
and cosα,cosβ,cosγ are in G.P ⇒cos2β=cosα.cosγ
Using this equation,
y=cos2α+cos2γ−4cosα.cosγ1+sinα.sinγ
=2+2sinα.sinγ−4sin2β−4cos2β1+sinα.sinγ
=2+2sinα.sinγ1+sinα.sinγ=2