The correct option is B −√3−√5√5
Here, both the angles A and B lie in 2nd quadrant.
So, only sine of the angle will be positive,
Now, we have sin Asin B=√32⇒sin A=√32sin Band cos Acos B=√52⇒cos A=√52cos BSquaring and adding we get,sin2A+cos2A=34sin2B+54cos2B⇒1=3sin2B+5cos2B4⇒4=3sin2B+5cos2BNow, using the identity sin2B=1−cos2Bwe get,2cos2B=1⇒cos B=±1√2Since, B lies in second quadrant thus,cos B=−1√2⇒then, sin B=1√2Now sin A=√32√2Also, cos A=−√52√2Thus, we get tan A=sin Acos A=−√3√5and, tan B=−1Thus, tan A+tan B=−√3√5−1⇒ tan A+tan B=−√3−√5√5