wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot C are in
(a) GP
(b) HP
(c) AP
(d) None of these

Open in App
Solution

(b) HP

Given:
sin (B + C − A), sin (C + A − B) and sin (A + B − C) are in A.P.

sinC+A-B - sinB+C-A = sinA+B-C - sinC+A-B2sinC+A-B-B-C+A2 cosC+A-B+B+C-A2 = 2sinA+B-C-C-A+B2 cosA+B-C+C+A-B2sinA-B cosC = sinB-C cosAsinA cosB cosC - cosA sinB cosC = sinB cosCcosA - cosB sinC cosA2sinB cosA cosC = sinA cosB cosC + cosA cosB sinCDividing both sides by cos AcosBcosC:2tanB=tanA+tanC 2cotB=1cotA+1cotC

Hence, cotA, cotB and cotC are in HP.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon