wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinβcosαcosβ+1=0 then show that 1+cotαtanβ=0.

Open in App
Solution

wehavegivenquestion:––––––––––––––––––––––––sinαsinβcosαcosβ+1=0sinαsinβcosαcosβ=1cosαcosβsinαsinβ=1Now,cos(α+β)=1formformula:cos(A+B)=cosAcosBsinAsinBweknow:cos0=1α+β=0β=αNowfromL.H.S:1+cotαtanβ=01+cotαtan(α)=01cotαtanα=011tanαtanα=011=0R.H.S

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon