The correct option is B 2sin2(π4−α)2cos2(π4+α)
If sinβ is the geometric mean between sinα and cosα, then sin2β=sinα.cosα
⇒cos2β=1−2sin2β=1−2sinα.cosα⇒cos22β=(1−sin2α)2
Now if we simplify option A using 2sinA.cosB=sin(A+B)+sin(A−B), we get
2sin2(π4−α)2cos2(π4+α)=(2sin(π4−α)cos(π4+α))2=(sinπ2+sin(−2α))2=(1−sin2α)2
Similarly, we can verify other options.
Hence option A is correct.