The correct option is
B 2The determinant of the coefficient of the given set of equation is
Δ=∣∣
∣∣cosα−sinα1sinαcosα1cos(α+β)−sin(α+β)1∣∣
∣∣Applying R3→R3−cosβR1+sinβR2
Δ=∣∣
∣∣cosα−sinα1sinαcosα1001+sinβ−cosβ∣∣
∣∣
⇒Δ=(1+sinβ−cosβ)∣∣∣cosα−sinαsinαcosα∣∣∣
⇒Δ=(1+sinβ−cosβ)(cos2α+sin2α)
⇒Δ=(1+sinβ−cosβ)
To solve the equation by cramer's rule
Let
Δ1=∣∣
∣
∣∣cosβ+1−sinα1−sinβ+1cosα12−sin(α+β)1∣∣
∣
∣∣
Applying C1→C1−C3
=∣∣
∣
∣∣cosβ−sinα1−sinβcosα11−sin(α+β)1∣∣
∣
∣∣
Applying R3→R3−cosβR1+sinβR2
=∣∣
∣
∣∣cosβ−sinα1−sinβcosα11−cos2β−sin2β01−cosβ+sinβ∣∣
∣
∣∣Δ1=(1+sinβ−cosβ)cos(α+β)
Similarly,
Δ2=∣∣
∣
∣∣cosαcosβ+11sinα−sinβ+11cos(α+β)21∣∣
∣
∣∣
Δ2=−(1+sinβ−cosβ)sin(α+β)
And
Δ3=∣∣
∣
∣∣cosα−sinαcosβ+1sinαcosα−sinβ+1cos(α+β)−sin(α+β)2∣∣
∣
∣∣Δ3=1+sinβ−cosβ
Therefore from cramer's rule
x=Δ1Δ=cos(α+β),y=Δ2Δ=−sin(α+β),z=Δ3Δ=1
Hence,
x2+y2+z2=cos2(α+β)+sin2(α+β)+1=2
Hence, option B.