wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinβcosβ and x,y and z satisfy the equations
xcosαysinα+z=cosβ+1
xsinα+ycosα+z=sinβ+1
xcos(α+β)ysin(α+β)+z=2,

then x2+y2+z2 equals

A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 2
The determinant of the coefficient of the given set of equation is
Δ=∣ ∣cosαsinα1sinαcosα1cos(α+β)sin(α+β)1∣ ∣
Applying R3R3cosβR1+sinβR2
Δ=∣ ∣cosαsinα1sinαcosα1001+sinβcosβ∣ ∣

Δ=(1+sinβcosβ)cosαsinαsinαcosα

Δ=(1+sinβcosβ)(cos2α+sin2α)

Δ=(1+sinβcosβ)
To solve the equation by cramer's rule
Let
Δ1=∣ ∣ ∣cosβ+1sinα1sinβ+1cosα12sin(α+β)1∣ ∣ ∣
Applying C1C1C3
=∣ ∣ ∣cosβsinα1sinβcosα11sin(α+β)1∣ ∣ ∣
Applying R3R3cosβR1+sinβR2
=∣ ∣ ∣cosβsinα1sinβcosα11cos2βsin2β01cosβ+sinβ∣ ∣ ∣Δ1=(1+sinβcosβ)cos(α+β)
Similarly,
Δ2=∣ ∣ ∣cosαcosβ+11sinαsinβ+11cos(α+β)21∣ ∣ ∣
Δ2=(1+sinβcosβ)sin(α+β)
And
Δ3=∣ ∣ ∣cosαsinαcosβ+1sinαcosαsinβ+1cos(α+β)sin(α+β)2∣ ∣ ∣Δ3=1+sinβcosβ
Therefore from cramer's rule
x=Δ1Δ=cos(α+β),y=Δ2Δ=sin(α+β),z=Δ3Δ=1
Hence,
x2+y2+z2=cos2(α+β)+sin2(α+β)+1=2
Hence, option B.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cramer's Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon