If sin-1(a)+sin-1(b)+sin-1(c)=π then the value of a1-a2+b1-b2+c1-c2 will be
2abc
abc
12abc
13abc
Explanation for the correct option.
Given that, sin-1(a)+sin-1(b)+sin-1(c)=π.
Let, a=sinx,b=siny,c=sinz
⇒x+y+z=π....(1)
Step 2: Evaluate a1-a2+b1-b2+c1-c2
Substitute values of a,b,c in the expression.
∴a1-a2+b1-b2+c1-c2=sinx1-sin2x+siny1-sin2y+sinz1-sin2z=sinxcosx+sinycosy+sinzcosz=122sinxcosx+2sinycosy+2sinzcosz=12sin2x+sin2y+sin2z...(2)
Step 3: Simplify equation (2)
Now using identity, sinx+siny=2sinx+y2cosx-y2 we have:
⇒12sin2x+sin2y+sin2z=122sin2x+2y2cos2x-2y2+sin2z=122sinx+ycosx-y+sin2z=12[2sinπ-zcos(x-y)+2sinzcosz]=sinzcosx-y+cosz=sinzcosx-y+cosπ-x+y=sinzcosx-y+cosx+y=sinz2sinxsiny=2abc
Hence, option A is correct.