Given that,
sin(400+θ)=b
Then,
cos(400+θ)=√1−sin2(400−θ)
=√1−b2
Part (a),
cos(700+θ)=cos[300+(400+θ)]
=cos300cos(400+θ)−sin300sin(400+θ)
=√32√1−b2−12b
=√3√1−b2−b2
Hence, this is the answer.
Part(b)
cos(1600+θ)=cos[1200+(400+θ)]
=cos1200cos(1400+θ)−sin1200sin(1400+θ)
=cos(1800−600)cos(1400+θ)−sin(1800−600)sin(1400+θ)
=−cos600√1−b2−sin600b
=−12√1−b2−√32b
=−(√1−b2+√3b2)
Hence, this is the answer.