If sin(loge ii) = A+iB where i = √−1.Find the value of cos(loge ii).
Given sin(loge ii) = A+iB
A+iB = sin(ilogei)
= sin [iloge(cosπ2+isinπ2)]
Express I in Euler's form
= sin [ilogeeiπ2]
= sin [i.iπ2]
= sin (−π2) = -1
We know sin2θ + cos2θ = 1
sin2 (logeii) + cos2 (logeii) = 1
(−1)2 + cos2 (logeii) = 1
cos2 (logeii) = 0
cos(logeii) = 0