wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin α + sin β=a and cos α+cos β=b, prove that

(i) sin α+β=2aba2+b2

(ii) cos α-β=a2+b2-22

Open in App
Solution

The given equations are sin α + sin β=a and cos α+cos β=b.

(i)

sinC+sinD=2sinC+D2cosC-D22sinα+β2cosα-β2=a ...(1)

Now, using the identity sinC+sinD=2sinC+D2cosC-D2 for the LHS of cos α+cos β=b, we get

2cosα+β2cosα-β2=b ...(2)

On dividing (1) by (2), we get

tanα+β2=ab

We know,

sinθ=2tanθ21+tan2θ2
sinα+β=2tanα+β21+tan2α+β2sinα+β=2×ab1+a2b2=2aba2+b2

(ii)

On squaring sinα+sinβ=a and cosα+cosβ=b and adding them, we get sin2α+sin2β+2×sinαsinβ+ cos2α+cos2β+2×cosαcosβ=a2+b21+1+2sinαsinβ+cosαcosβ=a2+b22sinαsinβ+cosαcosβ=a2+b2-22cosα-β=a2+b2-2 cosA-B=sinAsinB+cosAcosBcosα-β=a2+b2-22

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon