wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sin | sin-s-cos-1 x 1 then find the value of xsin+osx-1, then find the value of x14.

Open in App
Solution

It is given that sin( sin 1 1 5 + cos 1 x )=1.

On simplifying we get,

sin( sin 1 1 5 + cos 1 x )=1 sin( sin 1 1 5 )cos( cos 1 x )+cos( sin 1 1 5 )sin( cos 1 x )=1 1 5 ×x+cos( sin 1 1 5 )sin( cos 1 x )=1 x 5 +cos( sin 1 1 5 )sin( cos 1 x )=1 (1)

Assume, sin 1 1 5 =y, then,

siny= 1 5 cosy= 1 ( 1 5 ) 2 cosy= 2 6 5 y= cos 1 ( 2 6 5 )

This gives sin 1 1 5 = cos 1 ( 2 6 5 ).

Also, assume cos 1 x=z, then,

cosz=x sinz= 1 x 2 z= sin 1 ( 1 x 2 )

This gives cos 1 x= sin 1 ( 1 x 2 ).

Substitute sin 1 1 5 = cos 1 ( 2 6 5 ) and cos 1 x= sin 1 ( 1 x 2 ) in equation (1),

x 5 +cos( cos 1 ( 2 6 5 ) )sin( sin 1 ( 1 x 2 ) )=1 x 5 + 2 6 5 × 1 x 2 =1 x+2 6 × 1 x 2 =5 2 6 × 1 x 2 =5x

Square both sides of the above equation,

4×6×( 1 x 2 )=25+ x 2 10x 2424 x 2 =25+ x 2 10x 25 x 2 10x+1=0 ( 5x1 ) 2 =0

Further simplify,

5x1=0 5x=1 x= 1 5

Therefore, the value of x is 1 5 .


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon