The correct option is C θ=2nπ−π2, n∈Z
sinθ,1,cos2θ are in G.P.
If a,b,c are in G.P., then
ba=cb
Now,
1sinθ=cos2θ1⇒sinθcos2θ=1⇒sinθ(1−2sin2θ)=1⇒2sin3θ−sinθ+1=0
By observation, sinθ=−1 is one root,
⇒(sinθ+1)(2sin2θ−2sinθ+1)=0⇒(sinθ+1)(sin2θ−sinθ+12)=0⇒(sinθ+1)[(sinθ−12)2+14]=0⇒sinθ=−1⇒θ=(4n−1)π2, n∈Z