If sinθ1+sinθ2+sinθ3=3, then cosθ1+cosθ2+cosθ3=.
The correct option is A (0)
Given, sinθ1+sinθ2+sinθ3=3
This value is possible only if sinθ1=sinθ2=sinθ3=1
Since sinπ2=1
So, sinθ1=sinπ2
Therefore, θ1=θ2=θ3=π2
Now, substitute the values of θ1,θ2,θ3 in cosθ1+cosθ2+cosθ3, we get
cosπ2+cosπ2+cosπ2=0+0+0
∴cosθ1+cosθ2+cosθ3=0