The correct options are
A xy=sin2θ
B x2−2x−sin2θ=0
D y2+2y−sin2θ=0
Given equations are
sinθ(1+sinθ)+cosθ(1+cosθ)=x
sinθ(1−sinθ)+cosθ(1−cosθ)=y
On solving both equations, we get
sinθ+sin2θ+cosθ+cos2θ=x
sinθ+cosθ+1=x→(1)
Similarly
sinθ(1−sinθ)+cosθ(1−cosθ)=y
sinθ−sin2θ+cosθ−cos2θ=y
sinθ+cosθ−1=y→(2)
On multiplying equation (1) and (2), we get
(sinθ+cosθ+1)(sinθ+cosθ−1)=xy
(sinθ+cosθ)2−1=xy
sin2θ+cos2θ+2sinθcosθ−1=xy
1+2sinθcosθ−1=xy
sin2θ=xy
Option C is correct
Similarly, we can check other options as
x2−2x−sin2θ=0
x2−2x=sin2θ
Taking LHS , we have
x2−2x
=(sinθ+cosθ+1)2−2(sinθ+cosθ+1)
=(sinθ+ cosθ+1)(sinθ+cosθ+1−2)
=(sinθ+cosθ)2−1
=sin2θ+cos2θ+2sinθcosθ−1
=1+2sinθcosθ−1
=sin2θ
=RHS
Similarly, we can prove other option
y2+2y−sin2θ=0
y2+2y=sin2θ
Taking LHS
=y2+2y
=y(y+2)
=(sinθ+cosθ−1)(sinθ+cosθ−1+2)
=(sinθ+cosθ)2−1
=sin2θ+cos2θ+2sinθcosθ−1
=1+2sinθcosθ−1
=sin2θ
=RHS
Hence, Option A , B and C are correct.