wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ(1+sinθ)+cosθ(1+cosθ)=x and sinθ(1sinθ)+cosθ(1cosθ)=y, then

A
x22xsin2θ=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y2+2ysin2θ=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
xy=sin2θ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
xy=sinθ+cosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A xy=sin2θ
B x22xsin2θ=0
D y2+2ysin2θ=0
Given equations are
sinθ(1+sinθ)+cosθ(1+cosθ)=x

sinθ(1sinθ)+cosθ(1cosθ)=y

On solving both equations, we get
sinθ+sin2θ+cosθ+cos2θ=x
sinθ+cosθ+1=x(1)

Similarly
sinθ(1sinθ)+cosθ(1cosθ)=y
sinθsin2θ+cosθcos2θ=y
sinθ+cosθ1=y(2)

On multiplying equation (1) and (2), we get

(sinθ+cosθ+1)(sinθ+cosθ1)=xy

(sinθ+cosθ)21=xy
sin2θ+cos2θ+2sinθcosθ1=xy
1+2sinθcosθ1=xy
sin2θ=xy
Option C is correct
Similarly, we can check other options as

x22xsin2θ=0
x22x=sin2θ

Taking LHS , we have

x22x
=(sinθ+cosθ+1)22(sinθ+cosθ+1)
=(sinθ+ cosθ+1)(sinθ+cosθ+12)
=(sinθ+cosθ)21
=sin2θ+cos2θ+2sinθcosθ1
=1+2sinθcosθ1
=sin2θ
=RHS

Similarly, we can prove other option
y2+2ysin2θ=0
y2+2y=sin2θ
Taking LHS
=y2+2y
=y(y+2)
=(sinθ+cosθ1)(sinθ+cosθ1+2)
=(sinθ+cosθ)21
=sin2θ+cos2θ+2sinθcosθ1
=1+2sinθcosθ1
=sin2θ
=RHS

Hence, Option A , B and C are correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon