Put a=cosθ+isinθ;b=cosϕ+isinϕ;c=cosΨ+isinΨ
∴a+2b+3c=(cosθ+2cosϕ+3cosΨ)+i(sinθ+2sinϕ+3sinΨ)
=0+i.0 (given)
∴a+2b+3c=0
∴a3+8b3+27c3=18abc
⇒(cosθ+isinθ)3+8(cosϕ+isinϕ)3+27(cosΨ+isinΨ)3
=18(cosθ+isinθ)(cosϕ+isinϕ)(cosΨ+isinΨ)
⇒(cos3θ+isin3θ)+8(cos3ϕ+isin3ϕ)+27(cos3Ψ+isin3Ψ)
=18{cos(θ+ϕ+Ψ)+isin(θ+ϕ+Ψ)}
Equate the real parts, we get
cos3θ+8cos3ϕ+27cos3Ψ=18cos(θ+ϕ+Ψ)
Again 1a+2b+3c=0 (using hypothesis)
⇒bc+2ca+3ab=0
⇒(cosϕ+isinϕ)(cosΨ+isinΨ)+2(cosΨ+isinΨ)(cosθ+isinθ)+3(cosθ+isinθ)(cosϕ+isinϕ)=0
⇒cos(ϕ+Ψ)+isin(ϕ+Ψ)+2cos(Ψ+θ)+2isin(Ψ+θ)+3cos(θ+ϕ)+3isin(θ−ϕ)=0
Equate the imaginary parts, we get
sin(ϕ+Ψ)+2sin(Ψ+θ)+3sin(θ+ϕ)=0