wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ+2sinϕ+3sinΨ=0 and cosθ+2cosϕ+3cosΨ=0; then evaluate
(a) cos3θ+8cos3ϕ+27cos3Ψ
(b) sin(ϕ+Ψ)+2sin(Ψ+θ)+3sin(θ+Ψ).

Open in App
Solution

Put a=cosθ+isinθ;b=cosϕ+isinϕ;c=cosΨ+isinΨ
a+2b+3c=(cosθ+2cosϕ+3cosΨ)+i(sinθ+2sinϕ+3sinΨ)
=0+i.0 (given)
a+2b+3c=0
a3+8b3+27c3=18abc
(cosθ+isinθ)3+8(cosϕ+isinϕ)3+27(cosΨ+isinΨ)3
=18(cosθ+isinθ)(cosϕ+isinϕ)(cosΨ+isinΨ)
(cos3θ+isin3θ)+8(cos3ϕ+isin3ϕ)+27(cos3Ψ+isin3Ψ)
=18{cos(θ+ϕ+Ψ)+isin(θ+ϕ+Ψ)}
Equate the real parts, we get
cos3θ+8cos3ϕ+27cos3Ψ=18cos(θ+ϕ+Ψ)
Again 1a+2b+3c=0 (using hypothesis)
bc+2ca+3ab=0
(cosϕ+isinϕ)(cosΨ+isinΨ)+2(cosΨ+isinΨ)(cosθ+isinθ)+3(cosθ+isinθ)(cosϕ+isinϕ)=0
cos(ϕ+Ψ)+isin(ϕ+Ψ)+2cos(Ψ+θ)+2isin(Ψ+θ)+3cos(θ+ϕ)+3isin(θϕ)=0
Equate the imaginary parts, we get
sin(ϕ+Ψ)+2sin(Ψ+θ)+3sin(θ+ϕ)=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Convexity and Concavity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon