Dividing both sides by cosθ
tanθ+3=√2secθ
Squaring both sides
(tanθ+3)2=2sec2θ
tan2θ+6tanθ+9=2(1+tan2θ)
tan2θ−6tanθ−7=0
tanθ=−(−6)±√(−6)2−4∗1∗(−7)2
∴tanθ=7,−1
We know
sin2θ=2tanθ1+tan2θ
Putting the values of tanθ
sin2θ=2∗71+72=725
sin2θ=2∗(−1)1+(−1)2=−1
∴sin2θ=725,−1