If sinθ+cosθ=0 and θ lies in the fourth quadrant, find sinθ and cosθ.
We have,
sinθ+cosθ=0
⇒sinθ=−cosθ.....(i)
⇒sinθcosθ=−1
We know that,
sec2θ−tan2θ=1
⇒secθ=1+tan2θ
⇒secθ=±√1+tan2θ
In the 4th quadrant sec θ positive.
∴secθ=√1+tan2θ
=√1+(−1)2
=√1+1=√2
∴cosθ=1secθ=1√2
Putting cosθ=1√2 in equation (i),we get,
sinθ=−(1√2)=−1√2
Hence, sinθ=−1√2 and cosθ=1√2.