Given:
sinθ+cosθ=1
Dividing both sides by √12+12=√2,
we get
⇒1√2sinθ+1√2cosθ=1√2
⇒cos(π4)sinθ+sin(π4)cosθ=sin(π4)
⇒sin(θ+π4)=sinπ4
[∵sinAcosB+cosAsinB =sin(A+B)]
⇒θ+π4=nπ+(−1)nπ4,nϵZ
[Ifsinθ=sinα,thenθ=nπ+(−1)nα,n ϵ Z]
⇒θ=nπ+(−1)nπ4−π4,n ϵ Z
Hence, general value is
θ=nπ+(−1)nπ4−π4,n ϵ Z