We have,
sinθ−cosθ=1 ……. (1)
On squaring both sides, we get
sin2θ+cos2θ−2sinθcosθ=1
1−2sinθcosθ=1
sinθcosθ=0
Since,
⇒sin3θ−cos3θ
⇒(sinθ−cosθ)(sin2θ+cos2θ+sinθcosθ)[∵x3−y3=(x−y)(x2+y2+xy)]
⇒(1)(1+0)
⇒1
Hence, this is the answer.