The correct option is B 64−3(a2−4)264
Given: sinθ+cosθ=a2
Squaring on both sides,
(sinθ+cosθ)2=a24
⇒sin2θ+cos2θ+2sinθcosθ=a24
⇒1+2sinθcosθ=a24
⇒2sinθcosθ=a24−1
⇒sinθcosθ=12(a24−1)=a2−48 ...(i)
Consider, sin6θ+cos6θ=(sin2θ)3+(cos2θ)3
=(sin2θ+cos2θ)(sin4θ+cos4θ−sin2θcos2θ) [∵a3+b3=(a+b)(a2+b2−ab)]
=1×[(sin2θ+cos2θ)2−3sin2θcos2θ] (∵sin2θ+cos2θ=1)
=1−3sin2θcos2θ
=1−3(a2−48)2 [From (i)]
=1−3(a2−4)264
⇒sin6θ+cos6θ=64−3(a2−4)264
Hence, the correct answer is option (b).