If sinθ cosθ=12,then what is the value of sin6θ+cos6θ ?
1/4
sinθcosθ=12.....(1)(sinθcosθ)2=14
Or, sin2θcos2θ=14
Or, sin2θ(1−sin2θ)=14
Or, sin2θ−sin4θ=14
Let sin2θ=x
Or, 4x−4x2+1=0
Or, 4x2−4x−1=0
Or, 4x2−2x−2x−1=0
Or, 2x(2x−1)+1(2x−1)=0
x=12 and x=−12
Since, x=sin2θ, it can't be negative. So, x=12
Hence, sinθ=±1√2
Putting the value of sin x in equation (1)
We get cosθ=±1√2
So, sin6θ+cos6θ=(±1√2)6+(±1√2)6
=18+18=14