If sinθ+cosθ=mandsecθ+cosecθ=n, then n(m+1)(m−1)=
n(m+1)(m−1)
=(secθ+cosecθ)(sinθ+cosθ+1)(sinθ+cosθ−1)
=(secθ+cosecθ)[(sinθ+cosθ)2−12]
=(secθ+cosecθ)(sin2θ+cos2θ+2sinθcosθ−1)
=(secθ+cosecθ)(2sinθcosθ)
=2sinθ+2cosθ
=2m
If m=(cosθ−sinθ) and n=(cosθ+sinθ) then show that √mn+√nm=2√1−tan2θ
Prove the following trigonometric identities.(i) 1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ
(ii) sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ
(iii) cosθ−sinθ+1cosθ+sinθ−1=cosecθ+cotθ
(iv) (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ