If sinθ+cosθ=m, then prove that
sin6θ+cos6θ=4−3(m2−1)24, where m2≤2
To show: sin6θ+cos6θ=4−3(m2−1)24, where m2≤2
Since, sinθ+cosθ−m.....(i)
⇒(sinθ+cosθ)2=m2
⇒sin2θ+cos2θ+2sinθcosθ=m2
⇒1+2sinθcosθ=m2(∵sin2θ+cos2θ=1)
⇒2sinθcosθ=m2−1
⇒sinθcosθ=m2−12....(ii)
∴LHS=sin6θ+cos2θ
=(sin2θ)3+(cos2θ)3
=(sin2θ+cos2θ)(sin2θ)2+(cos2θ)2−sin2θcos2θ
=1.[(sin2θ)2+(cos2θ)2+2sin2θcos2θ−2sin2θcos2θ−sin2θcos2θ]
[adding and subtracting 2sin2θcos2θ]
=(sin2θ+cos2θ)2−3sin2θcos2θ
=1−3sin2θcos2θ
=1−3(sinθcosθ)2
=1−3(m2−1)24 [from (ii)]
=4−3(m2−1)24, where m2≤2
=RHS Hence proved.