wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ+cosθ=m, then prove that

sin6θ+cos6θ=43(m21)24, where m22

Open in App
Solution

To show: sin6θ+cos6θ=43(m21)24, where m22

Since, sinθ+cosθm.....(i)

(sinθ+cosθ)2=m2

sin2θ+cos2θ+2sinθcosθ=m2

1+2sinθcosθ=m2(sin2θ+cos2θ=1)

2sinθcosθ=m21

sinθcosθ=m212....(ii)

LHS=sin6θ+cos2θ

=(sin2θ)3+(cos2θ)3

=(sin2θ+cos2θ)(sin2θ)2+(cos2θ)2sin2θcos2θ

=1.[(sin2θ)2+(cos2θ)2+2sin2θcos2θ2sin2θcos2θsin2θcos2θ]

[adding and subtracting 2sin2θcos2θ]

=(sin2θ+cos2θ)23sin2θcos2θ

=13sin2θcos2θ

=13(sinθcosθ)2

=13(m21)24 [from (ii)]

=43(m21)24, where m22

=RHS Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon