wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

If [sinθ]+cos[θ]=pand sec[θ]+cosec[θ]=q then show that,q[(p21)=2p]

Open in App
Solution

Given that, sinθ+cosθ=p and secθ+cosecθ=q

Then prove that q(p21)=2p

L.H.S.

q(p21)

=(secθ+cosecθ)[(sinθ+cosθ)21]

=(secθ+cosecθ)[sin2θ+cos2θ+2sinθcosθ1]

=(secθ+cosecθ)[1+2sinθcosθ1]

=(secθ+cosecθ)(2sinθcosθ)

=2sinθcosθ(1cosθ+1sinθ)

=2sinθcosθ(sinθ+cosθsinθcosθ)

=2(sinθ+cosθ)

=2p

R.H.S.

Hence proved.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon