Given that, sinθ+cosθ=p and secθ+cosecθ=q
Then prove that q(p2−1)=2p
L.H.S.
q(p2−1)
=(secθ+cosecθ)[(sinθ+cosθ)2−1]
=(secθ+cosecθ)[sin2θ+cos2θ+2sinθcosθ−1]
=(secθ+cosecθ)[1+2sinθcosθ−1]
=(secθ+cosecθ)(2sinθcosθ)
=2sinθcosθ(1cosθ+1sinθ)
=2sinθcosθ(sinθ+cosθsinθcosθ)
=2(sinθ+cosθ)
=2p
R.H.S.
Hence proved.