wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ+cosθ=p and secθ+cscθ=q, show that q(p21)=2p.a

Open in App
Solution

sinθ+cosθ=p
secθ+cscθ=q
p21=(sinθ+cosθ)21
p21=sin2θ+cos2θ+2sinθcosθ1
p21=2sinθcosθ
q(p21)=(2sinθcosθ)(secθ+cscθ)
q(p21)=2sinθ+2cosθ
q(p21)=2(sinθ+cosθ)=LHS
2p=RHS=2(sinθ+cosθ)
LHS=RHS
Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon