If sin θ+ cos θ=p and tan θ+ cot θ=q then q(p2−1)=
(sinθ + cosθ)2=p2
⇒1+ sin2θ=p2 [∵ sin 2θ=p2−1]
tanθ+1tanθ=q
⇒tan2θ+12tanθ=q2
cosec2θ=q2
⇒1p2−1=q2⇒2=(p2−1)q
Evaluate 1+ tan θ1+ cot θ, if sin θ = x and cos θ = y.