If (sinθ+cosθ)=√2cosθ, show that cotθ=(√2+1).
sinθ+cosθ=√2cosθ⇒sinθ=(√2−1)cosθ⇒sinθ√2−1=cosθ⇒sinθ(√2+1)2−1=cosθ⇒cosθsinθ=√2+1∴cotθ=√2+1
If cosec θ=2, show that cotθ+sinθ1+cosθ = 2.