wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ+cosθ=x, prove that sin6θ+cos6θ=43(x21)24

Open in App
Solution

sinθ+cosθ=x [ Given ]
(sinθ+cosθ)2=x2 [ Squaring both sides ]
sin2θ+2sinθcosθ+cos2θ=x2
(sin2θ+cos2θ)+2sinθcosθ=x2
1+2sinθcosθ=x2
2sinθcosθ=x21
sinθcosθ=x212
(sinθcosθ)2=(x21)24 [ Squaring both sides ]
sin2θcos2θ=(x21)24
sin6θ+cos6θ=(sin2θ)3+(cos2θ)3
=(sin2θ+cos2θ)33sin2θcos2θ(sin2θ+cos2θ)
=(1)33(x21)24(1)
=(1)3(x21)24(1)
=43(x21)24 [ Hence proved ]

sin6θ+cos6θ==43(x21)24

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon