wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ + cosθ = x, prove that sin6θ+cos6θ=43(x21)24

Open in App
Solution

sinθ+cosθ=x
sin2θ+cos2θ+2sinθcosθ=x
1+2sinθcosθ=x
sinθcosθ=(x12)
sin6θ+cos6θ=(sin2θ)3+(cos2θ)3=(sin2θ+cos2θ)(sin4θ+cos4θsin2θcos2θ)
=((sin2θ+cos2θ)22sin2θcos2θsin2θcos2θ)=13sin2θcos2θ
=13(x1)24
=43(x1)24.

1167277_1246509_ans_d2cbd686443c43918aa531b5bb7d7b6c.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon