We know that,
sinθ=oppositeSideHypotenuse
(Hypotenuse)2=(oppositeSide)2+(adjacentSide)2
42=32+(adjacentSide)2
(adjacentSide)2=16−9=7
If tan θ=1√7, show that cosec2θ−sec2θ(cosec2θ+sec2θ=34
Prove the following
1.(1−sin2A)sec2A=1
2.sec4θ−sec2θ=tan4θ+tan2
3.(secθ−tanθ)2=1−sinθ1+sinθ
4.tanθ+secθ−1tanθ−secθ+=1+sinθcosθ