wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sinθ=xyx+y then show that tan(π4θ2)=±yx.

Open in App
Solution

We have,

sinθ=xyx+y

cos2θ=1sin2θ

cos2θ=1(xyx+y)2

cos2θ=(x+y)2(xy)2(x+y)2

cosθ=±2xyx+y

Taking L.H.S.

=tan(π4θ2)

=tanπ4tanθ21+tanπ4tanθ2

=1tanθ21+tanθ2

=1sinθ2cosθ21+sinθ2cosθ2

=cosθ2sinθ2cosθ2+sinθ2

=cosθ2sinθ2cosθ2+sinθ2×cosθ2sinθ2cosθ2sinθ2

=1sin2θ2cos2θ2

=1sinθcosθ ……. (1)

On putting the value of sinθ and cosθ in equation (1), we get

tan(π4θ2)=1sinθcosθ

=1xyx+y±2xyx+y

=±x+y(xy)2xy

=±2y2xy

=±yx

tan(π4θ2)=±yx

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Specific Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon