We have,
sinθ=x−yx+y
cos2θ=1−sin2θ
cos2θ=1−(x−yx+y)2
cos2θ=(x+y)2−(x−y)2(x+y)2
cosθ=±2√xyx+y
Taking L.H.S.
=tan(π4−θ2)
=tanπ4−tanθ21+tanπ4tanθ2
=1−tanθ21+tanθ2
=1−sinθ2cosθ21+sinθ2cosθ2
=cosθ2−sinθ2cosθ2+sinθ2
=cosθ2−sinθ2cosθ2+sinθ2×cosθ2−sinθ2cosθ2−sinθ2
=1−sin2θ2cos2θ2
=1−sinθcosθ ……. (1)
On putting the value of sinθ and cosθ in equation (1), we get
tan(π4−θ2)=1−sinθcosθ
=1−x−yx+y±2√xyx+y
=±x+y−(x−y)2√xy
=±2y2√xy
=±√yx
tan(π4−θ2)=±√yx
Hence, proved.